能源短缺、環境污染、氣候變暖等多方因素共同成就新能源汽車的崛起。材料行業是現代工業的基石,而在新能源汽車產業中,各種先進材料的應用也是支撐起整個產業的基礎。這里,我們就來了解一下在新能源汽車智能化進程中占據越來越重要地位、不斷嶄露頭角的陶瓷材料。陶瓷基板在新能源汽車的電機驅動中,采用SiCMOSFET器件比傳統SiIGBT帶來5%~10%續航提升,未來將會逐步取代SiIGBT。但SiCMOSFET芯片面積小,對散熱要求高。陶瓷覆銅板是銅-陶瓷-銅“三明治”結構的復合材料,它具有陶瓷的散熱性好、絕緣性高、機械強度高、熱膨脹與芯片匹配的特性,又兼有無氧銅電流承載能力強、焊接和鍵合性能好、熱導率高的特性,幾乎成為SiCMOSFET在新能源汽車領域主驅應用的必選項。氧化鎂陶瓷可用于制作高溫密封件。莆田耐腐蝕陶瓷銷售
在現代工業制造領域,超硬耐高溫99氧化鋁陶瓷因其的物理和化學性能,如高硬度、耐磨性、耐腐蝕性以及高溫穩定性等,被廣泛應用于各種精密加工領域。然而,這種材料的精密加工也面臨著一些挑戰。本文將探討超硬耐高溫99氧化鋁陶瓷精密加工的重要性以及面臨的挑戰。超硬耐高溫99氧化鋁陶瓷的精密加工對于提高產品質量和性能至關重要。由于其硬度極高,普通的切削工具難以對其進行有效的加工,因此需要采用特殊的精密加工技術。通過精密加工,可以確保產品的形狀精度和表面質量,從而提高產品的性能和使用壽命。韶關特種陶瓷加工廠家氧化鎂陶瓷可用于制作高溫陶瓷瓶頸連接件。
新型陶瓷材料在性能上有其獨特的優越性。在熱和機械性能方面,有耐高溫、隔熱、高硬度、耐磨耗等;在電性能方面有絕緣性、壓電性、半導體性、磁性等;在化學方面有催化、耐腐蝕、吸附等功能;在生物方面,具有一定生物相容性能,可作為生物結構材料等。但也有它的缺點,如脆性。因此研究開發新型功能陶瓷是材料科學中的一個重要領域。屬于新型材料的一種。傳統陶瓷主要采用天然的巖石、礦物、粘土等材料做原料。而新型陶瓷則采用人工合成的高純度無機化合物為原料,在嚴格控制的條件下經成型、燒結和其他處理而制成具有微細結晶組織的無機材料。它具有一系列優越的物理、化學和生物性能,其應用范圍是傳統陶瓷遠遠不能相比的,這類陶瓷又稱為特種陶瓷或精細陶瓷。
陶瓷軸承新能源汽車中,陶瓷軸承的應用成為一種趨勢。新能源汽車對汽車軸承提出了更多新要求,首先電機軸承相比傳統軸承轉速高,需要密度更低、相對更耐磨的材料;同時由于電機的交變電流引起周圍電磁場變化,需要更好的絕緣性減小軸承放電產生的電腐蝕;第三,要求軸承球表面更光滑,較少磨損。陶瓷球具有低密度、高硬度、耐摩擦等特點,適宜高速旋轉工況,在高溫強磁高真空等領域,陶瓷球具有不可替代性。特斯拉采用的電機中輸出軸是采用陶瓷軸承,采用NSK設計的混合陶瓷軸承,軸承滾珠采用50個氮化硅球組成;奧迪ATA250電機位于內部的2個轉子軸承采用陶瓷材質制成。氧化鎂陶瓷可用于制作電子元件的絕緣基板。
氮化硅、碳化硅等新型陶瓷還可用來制造發動機的葉片、切削刀具、機械密封件、軸承、火箭噴嘴、爐子管道等,具有非常普遍的用途。利用陶瓷對聲、光、電、磁、熱等物理性能所具有的特殊功能而制造的陶瓷材料稱為功能陶瓷。功能陶瓷種類繁多,用途各異。例如,根據陶瓷電學性質的差異可制成導電陶瓷、半導體陶瓷、介電陶瓷、絕緣陶瓷等電子材料,用于制作電容器、電阻器、電子工業中的高溫高頻器件,變壓器等電子零件。利用陶瓷的光學性能可制造固體激光材料、光導纖維、光儲存材料及各種陶瓷傳感器。此外,陶瓷還用作壓電材料、磁性材料、基底材料等。總之,新型陶瓷材料幾乎遍及現代科技的每一個領域,應用前景十分廣闊。氧化鎂陶瓷可用于制作高溫陶瓷瓶頸連接裝置。河源氧化鋯陶瓷樣品
氧化鎂陶瓷可用于制作高溫陶瓷噴嘴。莆田耐腐蝕陶瓷銷售
高介電強度(絕緣性):它們在其他材料的機械和熱性能趨于退化的高溫應用中特別有用。一些陶瓷具有低電損耗和高介電常數;這些通常用于電容器和諧振器等電子應用中。此外,將絕緣體與結構部件相結合產生了許多產品創新。耐高溫性能:陶瓷材料是一種超高溫材料,其熔點溫度大都超過1500℃。目前在發動機、渦輪機和軸承等高溫應用中已經有著部分案例。導熱性和絕緣性能:不同類型的陶瓷材料的熱性能差異很大。有一些陶瓷(氮化鋁)具有高導熱性,通常在許多電氣應用中用作散熱器或交換器。其他陶瓷的導熱性要低得多,使其適用于廣泛的應用。化學惰性、耐腐蝕性能:陶瓷材料的化學穩定性非常好,化學溶解度低,因此具有很高的耐腐蝕性。金屬和聚合物無法提供相同的惰性或耐腐蝕性,這使得陶瓷在許多商業和工業應用中成為極具吸引力的選擇,特別是在還需要耐磨性時。莆田耐腐蝕陶瓷銷售