一插片、第二插片之間通過線圈架隔開,可以明顯增大爬電距離,從而提高了電氣性能和可靠性,提升了產品質量;而且整流橋堆放置在線圈架繞線的不同側,減少了線圈發熱引起整流橋堆損傷或整個繞組的二次損傷。附圖說明圖1為本實用新型的結構示意圖。圖2為本實用新型的圖。圖3為本實用新型線圈架的結構示意圖。圖4為本實用新型整流橋堆的構示意圖。具體實施方式為了使本技術領域的人員更好的理解本實用新型方案,下面將結合本實用新型實施例中的附圖,對本實用新型實施例中的技術方案進行清楚、完整的描述。如圖1-4所示,一種電磁閥的帶整流橋繞組塑封機構,包線圈架1、繞組、插片組件及塑封殼,其中所述線圈架1為一塑料架,該線圈架1包括架體10、設在架體10上部的一限位凸部101及設在所述架體10下部的第二限位凸部102,所述一限位凸部101為與所述架體10一體成型的環片,所述第二限位凸部102與所述架體10一體成型的環片;在所述架體10上繞有的銅絲以形成所述繞組;在所述線圈架1上套入有塑封殼,所述塑封殼為常規的塑料外殼,該塑封殼與所述架體10相連以包著繞組。進一步的,所述插接片組件包括一插片21和兩個第二插片22,所述一插片21為銅金屬片,該一插片21為兩個。常用的國產全橋有佑風YF系列,進口全橋有ST、IR等。中國香港哪里有整流橋模塊品牌
所述第二插片為兩個。推薦的,所述線圈架上設有供所述第二插接片插入的插接槽;通過設置插接槽便于對第二插片進行安裝,第二插片插入到插接槽當中,插接槽的內壁對第二插片進行限位。推薦的,所述第二插片側壁上設有電連凸部,所述整流橋堆一側設有與所述電連凸部相連的凸出部。推薦的,所述整流橋堆另一側設有與所述一插片相連的凸部。推薦的,所述線圈架上設有凹陷部,所述一插片設于所述凹陷部內;通過設置凹陷部可便于在安裝一插片的時候,一插片直接嵌入到凹陷部當中,其安裝速度快,裝配穩定。推薦的,所述線圈架上部設有一限位凸部,下部設有第二限位凸部;所述一插片和第二插片均設于所述一限位凸部上;通過設置一限位凸部和第二限位凸部,其可便于繞設線圈。推薦的,所述一限位凸部上設有凹槽部,所述整流橋堆設于所述凹槽部內;通過設置凹槽部可便于對整流橋堆準確的進行安裝,其具有定位效果。推薦的,所述電連凸部與所述凸出部焊錫或電阻焊連接;通過將電連凸部和凸出部之間進行電連,其兩者連接牢固,電能傳輸穩定。綜上所述,本實用新型的優點在于將整流橋堆內嵌到電磁閥中,實現了電磁閥自身的全波整流功能,從而降低了制造成本。中國香港哪里有整流橋模塊品牌四個引腳中,兩個直流輸出端標有+或-,兩個交流輸入端有~標記。
所以在自然冷卻散熱的情況下,整流橋的大部分損耗是通過該引腳把熱量傳遞給PCB板,然后由PCB板擴充其換熱面積而散發到周圍的環境中去。具體的分析計算如下:1、整流橋表面熱阻如圖2所示,可以得到整流橋的正向散熱面距熱源的距離為,背向散熱面距熱源的距離為,因此忽約其熱量在這四個表面的散發,可以得到整流橋正面和背面的傳熱熱阻為:一個二極管的熱阻為:由于在同一時間,整流橋內的四個二極管只有兩個在同時進行工作,因此整流橋正面與背面的傳熱熱阻應分別為兩個二極管熱阻的并聯,即:由于整流橋表面到周圍空氣間的散熱為自然對流換熱,則整流橋殼體表面的自然冷卻熱阻為:由上所述,可以得到整流橋通過殼體表面(正面和背面)的結溫與環境的熱阻分別為:則整流橋通過殼體表面途徑對環境進行傳熱的總熱阻為:2、整流橋引腳熱阻假設整流橋焊接在PCB板上,其引腳的長度為(從二極管的基銅板到PCB板上的焊盤),則整流橋一個引腳的熱阻為:在整流橋內部,四個二極管是分成兩組且每組共用一個引腳銅板,因此整流橋通過引腳散熱的熱阻為這兩個引腳的并聯熱阻:一方面由于PCB板的熱容比較大,另一方面冷卻風與PCB板的接觸面積較大,其換熱條件較好。
整流橋模塊的損壞原因及解決辦法:-整流橋模塊損壞,通常是由于電網電壓或內部短路引起。在排除內部短路情況下,我們可以更換整流橋模塊。而導致整流橋損壞的原因有以下5個原因1、散熱片不夠大,過載沖擊電流過大,熱量散發不出來。2、負載短路,絕緣不好,負荷電流過大引起;3、頻繁的啟停電源,若是感性負載屬于儲能元件!那么會產生反電動勢。將整流元件反向擊穿。在橋整流時只要一個壞了。則對稱橋臂必燒壞!4、個別元件使用時間較長,質量下降!5、輸入電壓過高。整流橋模塊壞了的解決辦法(1)找到引起整流橋模塊損壞的根本原因,并消除,防止換上新整流橋又發生損壞。(2)更換新整流橋模塊,對焊接的整流橋模塊需確保焊接可靠。確保與周邊元件的電氣安全間距,用螺釘聯接的要擰緊,防止接觸電阻大而發熱。與散熱器有傳導導熱的,要求涂好硅脂降低熱阻。(3)對并聯整流橋模塊要用同一型號、同一廠家的產品以避免電流不均勻而損壞。本產品均采用全數字移相觸發集成電路,實現了控制電路和晶閘管主電路集成一體化。
因此我們可以用散熱器的基板溫度的數值來代替整流橋的殼溫,這樣不在測量上易于實現,還不會給終的計算帶來不可容忍的誤差。折疊仿真分析整流橋在強迫風冷時的仿真分析前面本文從不同情形下的傳熱途徑著手,用理論的方法分析了整流橋在三種不同冷卻方式下的傳熱過程,在此本文通過仿真軟件詳細的整流橋模型來對帶有散熱器、強迫風冷下的整流橋散熱問題進行進一步的闡述。圖5、仿真計算模型如上圖是仿真計算的模型外型圖。在該模型中,通過解剖一整流橋后得到的相關尺寸參數來進行仿真分析模型的建立。其仿真分析結果如下所示:圖6、整流橋散熱器基板溫度分布有上圖可以看出,整流橋散熱器的基板溫度分布相對而言還是比較均勻的,約70℃左右。即使在四個二極管正下方的溫度與整流橋殼體背面與散熱器相接觸的外邊緣,也只有5℃左右的溫差。這主要是由于散熱器基板是一有一定厚度且導熱性能較好的鋁板,它能夠有效地把整流橋背面的不均勻溫度進行均勻化。整流橋殼體正面表面的溫度分布。從上圖可以看出,整流橋殼體正面的溫度分布是極不均勻的,在熱源(二極管)的正上方其表面溫度達到109℃,然而在整流橋的中間位置,遠離熱源處卻只有75℃,其表面的溫差可達到34℃左右。應用整流橋到電路中,主要考慮它的最大工作電流和比較大反向電壓。湖南進口整流橋模塊商家
整流橋就是將整流管封在一個殼內了。中國香港哪里有整流橋模塊品牌
本實用新型涉及半導體器件領域,特別是涉及一種合封整流橋的封裝結構及電源模組。背景技術:目前照明領域led驅動照明正在大規模代替節能燈的應用,由于用量十分巨大,對于成本的要求比較高。隨著系統成本的一再降低,主流的拓撲架構基本已經定型,很難再從外圈節省某個元器件,同時芯片工藝的提升對于高壓模擬電路來說成本節省有限,基本也壓縮到了。目前的主流的小功率交流led驅動電源方案一般由整流橋、芯片(含功率mos器件)、高壓續流二極管、電感、輸入輸出電容等元件組成,系統中至少有三個不同封裝的芯片,導致芯片的封裝成本高,基本上占到了芯片成本的一半左右,因此,如何節省封裝成本,已成為本領域技術人員亟待解決的問題之一。技術實現要素:鑒于以上所述現有技術的缺點,本實用新型的目的在于提供一種合封整流橋的封裝結構及電源模組,用于解決現有技術中芯片封裝成本高的問題。為實現上述目的及其他相關目的,本實用新型提供一種合封整流橋的封裝結構,所述合封整流橋的封裝結構至少包括:塑封體,設置于所述塑封體邊緣的火線管腳、零線管腳、高壓供電管腳、信號地管腳、漏極管腳、采樣管腳。中國香港哪里有整流橋模塊品牌