1990年初,當(dāng)WinfriedDenk剛從康奈爾大學(xué)博士畢業(yè)準(zhǔn)備前往瑞士讀博后時(shí),他看了一本關(guān)于激光掃描顯微鏡的書,從中了解到非線性光學(xué)效應(yīng)——強(qiáng)光和物質(zhì)的相互作用。當(dāng)時(shí),Denk有同事研究生物樣品中的鈣離子但苦于沒(méi)有強(qiáng)大的紫外激光器和光學(xué)元件,于是他就想到如果使用雙光子吸收就能夠繞開紫外,換言之,與其通過(guò)一個(gè)紫外光子激發(fā)標(biāo)記的鈣離子,通過(guò)兩個(gè)雙倍波長(zhǎng)的可見(jiàn)光光子也能激發(fā)相同的熒光。有了想法后馬上實(shí)驗(yàn)。借了一套染料飛秒激光器,Denk聯(lián)合他的導(dǎo)師WattWebb及其博士生JamesStrickler只用六個(gè)小時(shí)就完成了實(shí)驗(yàn)搭建,采集數(shù)據(jù)則用了兩到三天,于是一篇里程碑式的文章就此誕生了。雙光子顯微鏡中,同樣每個(gè)時(shí)刻只有焦平面上一個(gè)點(diǎn)的信號(hào)被探測(cè),并且連焦平面外的熒光信號(hào)也不會(huì)有。進(jìn)口雙光子顯微鏡光刺激
使用基因編碼的熒光探針可以在突觸和細(xì)胞分辨率下監(jiān)測(cè)體內(nèi)神經(jīng)元信號(hào),這是揭示動(dòng)物神經(jīng)活動(dòng)復(fù)雜機(jī)制的關(guān)鍵。使用雙光子顯微鏡(2PM)可以以亞細(xì)胞分辨率對(duì)鈣離子傳感器和谷氨酸傳感器成像,從而測(cè)量不透明大腦深處的活動(dòng);成像膜電壓變化能直接反映神經(jīng)元活動(dòng),目前電壓成像主要通過(guò)寬場(chǎng)顯微鏡實(shí)現(xiàn),但它的空間分辨率較差并且只是于淺層深度。因此要在不透明的大腦中以高空間分辨率對(duì)膜電壓變化進(jìn)行成像,需要較提高2PM的成像速率。FACED模塊輸出處的子脈沖序列可以看作從虛擬光源陣列發(fā)出的光,這些子脈沖在中繼到顯微鏡物鏡后形成了一個(gè)空間上分離且時(shí)間延遲的焦點(diǎn)陣列。然后將該模塊并入具有高速數(shù)據(jù)采集系統(tǒng)的標(biāo)準(zhǔn)雙光子熒光顯微鏡中,如圖2所示。光源是具有1MHz重復(fù)頻率的920nm的激光器,通過(guò)FACED模塊可產(chǎn)生80個(gè)脈沖焦點(diǎn),其脈沖時(shí)間間隔為2ns。這些焦點(diǎn)是虛擬源的圖像,虛擬源越遠(yuǎn),物鏡處的光束尺寸越大,焦點(diǎn)越小。光束沿y軸比x軸能更好地充滿物鏡,國(guó)外2PPLUS雙光子顯微鏡價(jià)位雙光子顯微鏡比單光子共聚焦顯微鏡較大的不同在于無(wú)須使用孔限制光學(xué)散射。
雙光子顯微鏡是結(jié)合了雙光子激發(fā)技術(shù)和激光掃描共聚顯微鏡的一種新型熒光顯微鏡,其原理大致是這樣的:首先,讓我們來(lái)看看什么是熒光顯微鏡。熒光顯微鏡是以紫外線為光源,照射被檢物體上的熒光物質(zhì)或是熒光染料,使其發(fā)出熒光。相比普通光學(xué)顯微鏡,熒光顯微鏡運(yùn)用了波長(zhǎng)更短的紫外線,再將可見(jiàn)光過(guò)濾掉,提高了分辨力率。而當(dāng)被檢物體過(guò)厚時(shí),從不同深度發(fā)出的熒光都會(huì)打在物鏡上,使觀察到的像模糊、發(fā)虛,無(wú)法清楚的知道被檢物體的結(jié)構(gòu)。而激光掃描共聚顯微鏡就是在熒光顯微鏡的基礎(chǔ)上,增加了激光掃描裝置,從而解決了上述問(wèn)題。激光共聚掃描顯微鏡脫離了傳統(tǒng)光學(xué)顯微鏡的場(chǎng)光源和局部平面成像模式,采用激光束作光源,激光束經(jīng)照明孔,經(jīng)由分光鏡反射至物鏡,并聚焦于樣品上,對(duì)標(biāo)本焦平面上每一點(diǎn)進(jìn)行掃描。組織樣品中的熒光物質(zhì)受到刺激后發(fā)出的熒光經(jīng)原來(lái)入射光路直接反向回到分光鏡,通過(guò)探測(cè)孔時(shí)先聚焦,然后被光探頭收集,轉(zhuǎn)化為信號(hào)輸送到計(jì)算機(jī)進(jìn)行處理。這個(gè)裝置能讓通過(guò)探測(cè)***的只有焦平面上發(fā)出的熒光,使成像更為清晰準(zhǔn)確,同時(shí)通過(guò)改變物鏡的焦距,能對(duì)不同焦平面進(jìn)行掃描,通過(guò)計(jì)算機(jī)繪出普通顯微鏡無(wú)法觀測(cè)的三維圖像。
新一代微型化雙光子熒光顯微成像系統(tǒng)的成功研制是國(guó)家重大科研儀器研制專項(xiàng)的一個(gè)碩果。它彰顯了北京大學(xué)在生物醫(yī)學(xué)成像領(lǐng)域先期布局的前瞻性,鍛煉了一支以年輕PI和碩博研究生為主體、具有學(xué)科交叉背景和重要技術(shù)創(chuàng)新能力的“中國(guó)智造”隊(duì)伍。目前,該研發(fā)團(tuán)隊(duì)正在領(lǐng)銜建設(shè)“多模態(tài)跨尺度生物醫(yī)學(xué)成像”十三五國(guó)家重大科技基礎(chǔ)設(shè)施,積極參與即將啟動(dòng)的中國(guó)腦科學(xué)計(jì)劃??梢云诖?,微型化雙光子熒光顯微成像系統(tǒng)將為實(shí)現(xiàn)“分析腦、理解腦、模仿腦”的戰(zhàn)略目標(biāo)發(fā)揮不可或缺的重要作用雙光子顯微鏡是新型的熒光顯微鏡,其原理大致是這樣的;
雙光子顯微鏡的優(yōu)勢(shì):在深度組織中以較長(zhǎng)時(shí)間對(duì)活細(xì)胞成像,雙光子顯微鏡是當(dāng)前之選。雙光子和共聚焦顯微鏡都是通過(guò)激光激發(fā)樣品中的熒光標(biāo)記,使用探測(cè)器測(cè)量被激發(fā)的熒光。但是,共聚焦一般使用單模光纖耦合激光器,通過(guò)單光子激發(fā)熒光,而雙光子使用飛秒激光器,通過(guò)幾乎同時(shí)吸收兩個(gè)長(zhǎng)波光子激發(fā)熒光。下面是兩種技術(shù)的對(duì)比圖。雙光子激發(fā)熒光的主要優(yōu)勢(shì):雙光子比共聚焦使用的更長(zhǎng)的波長(zhǎng),所以對(duì)組織的損傷更小且穿透更深。共聚焦的成像深度一般為100微米,雙光子則能達(dá)到250到500微米,甚至超過(guò)1毫米。另外,同時(shí)吸收兩個(gè)光子意味只有度聚焦點(diǎn)處能被激發(fā),所以不會(huì)損傷焦平面之外的組織,并且生成更清晰的圖像。雙光子顯微鏡供應(yīng)商找因斯蔻浦(上海)生物科技有限公司。進(jìn)口雙光子顯微鏡光刺激
雙光子顯微鏡廠家就找滔博生物。進(jìn)口雙光子顯微鏡光刺激
臨研所、病理科和科研處邀請(qǐng)北京大學(xué)王愛(ài)民副教授在2020年12月22日做了題目為“新一代微型雙光子顯微成像系統(tǒng)介紹及其在臨床醫(yī)療診斷”的學(xué)術(shù)報(bào)告。學(xué)術(shù)報(bào)告由臨研所醫(yī)學(xué)實(shí)驗(yàn)研究平臺(tái)潘琳老師主持。王愛(ài)民,北京大學(xué)信息科學(xué)技術(shù)學(xué)院副教授,畢業(yè)于北京大學(xué)物理系,獲學(xué)士、碩士學(xué)位,后于英國(guó)巴斯大學(xué)物理系獲博士學(xué)位。該研究組研發(fā)的微型雙光子顯微鏡,第1次在國(guó)際上獲得了小鼠大腦神經(jīng)元和神經(jīng)突觸清晰穩(wěn)定的動(dòng)態(tài)信號(hào),該成果獲得了2017年度“中國(guó)光學(xué)進(jìn)展”和“中國(guó)科學(xué)進(jìn)展”,并被NatureMethods評(píng)為2018年度“年度方法--無(wú)限制行為動(dòng)物成像”。目前,該研究組正在研究新一代雙光子顯微成像技術(shù)在臨床診斷中的應(yīng)用,為未來(lái)即時(shí)病理、離體組織檢測(cè)、術(shù)中診斷等提供新的影像手段和分析方法。進(jìn)口雙光子顯微鏡光刺激