一插片、第二插片之間通過線圈架隔開,可以明顯增大爬電距離,從而提高了電氣性能和可靠性,提升了產品質量;而且整流橋堆放置在線圈架繞線的不同側,減少了線圈發熱引起整流橋堆損傷或整個繞組的二次損傷。附圖說明圖1為本實用新型的結構示意圖。圖2為本實用新型的圖。圖3為本實用新型線圈架的結構示意圖。圖4為本實用新型整流橋堆的構示意圖。具體實施方式為了使本技術領域的人員更好的理解本實用新型方案,下面將結合本實用新型實施例中的附圖,對本實用新型實施例中的技術方案進行清楚、完整的描述。如圖1-4所示,一種電磁閥的帶整流橋繞組塑封機構,包線圈架1、繞組、插片組件及塑封殼,其中所述線圈架1為一塑料架,該線圈架1包括...
所述第六電容c6的一端連接所述合封整流橋的封裝結構1的高壓供電管腳hv,另一端連接所述合封整流橋的封裝結構1的電源地管腳bgnd。具體地,所述第二電感l2連接于所述合封整流橋的封裝結構1的電源地管腳bgnd與信號地管腳gnd之間。需要說明的是,本實施例增加所述電源地管腳bgnd實現整流橋的接地端與所述邏輯電路122的接地端分開,通過外置電感實現emi濾波,減小電磁干擾。同樣適用于實施例一及實施例三的電源模組,不限于本實施例。需要說明的是,所述整流橋的設置方式、所述功率開關管與所述邏輯電路的設置方式,以及各種器件的組合可根據需要進行設置,不以本實用新型列舉的幾種實施例為限。另外,由于應用的多樣性...
高壓端口hv通過金屬引線連接所述高壓供電基島13,進而實現與所述高壓供電管腳hv的連接,接地端口gnd通過金屬引線連接所述信號地基島14,進而實現與所述信號地管腳gnd的連接。需要說明的是,所述邏輯電路122可根據設計需要設置在不同的基島上,與所述控制芯片12的設置方式類似,在此不一一贅述作為本實施例的一種實現方式,所述漏極管腳drain的寬度大于,進一步設置為~1mm,以加強散熱,達到封裝熱阻的作用。本實施例的合封整流橋的封裝結構采用三基島架構,將整流橋、功率開關管、邏輯電路及高壓續流二極管集成在一個引線框架內,由此降低封裝成本。如圖4所示,本實施例還提供一種電源模組,所述電源模組包括:本實...
整流橋(D25XB60)內部主要是由四個二極管組成的橋路來實現把輸入的交流電壓轉化為輸出的直流電壓。在整流橋的每個工作周期內,同一時間只有兩個二極管進行工作,通過二極管的單向導通功能,把交流電轉換成單向的直流脈動電壓。對一般常用的小功率整流橋(如:RECTRONSEMICONDUCTOR的RS2501M)進行解剖會發現,其內部的結構如圖2所示,該全波整流橋采用塑料封裝結構(大多數的小功率整流橋都是采用該封裝形式)。橋內的四個主要發熱元器件——二極管被分成兩組分別放置在直流輸出的引腳銅板上。在直流輸出引腳銅板間有兩塊連接銅板,他們分別與輸入引**流輸入導線)相連,形成我們在外觀上看見的有四個對外...
高壓端口hv通過金屬引線連接所述高壓供電基島13,進而實現與所述高壓供電管腳hv的連接,接地端口gnd通過金屬引線連接所述信號地基島14,進而實現與所述信號地管腳gnd的連接。需要說明的是,所述邏輯電路122可根據設計需要設置在不同的基島上,與所述控制芯片12的設置方式類似,在此不一一贅述作為本實施例的一種實現方式,所述漏極管腳drain的寬度大于,進一步設置為~1mm,以加強散熱,達到封裝熱阻的作用。本實施例的合封整流橋的封裝結構采用三基島架構,將整流橋、功率開關管、邏輯電路及高壓續流二極管集成在一個引線框架內,由此降低封裝成本。如圖4所示,本實施例還提供一種電源模組,所述電源模組包括:本實...
以上就是ASEMI對于整流橋接法的兩個方面介紹正、負極性全波整流電路及故障處理如圖9-24所示是能夠輸出正、負極性單向脈動直流電壓的全波整流電路。電路中的T1是電源變壓器,它的次級線圈有一個中心抽頭,抽頭接地。電路由兩組全波整流電路構成,VD2和VD4構成一組正極性全波整流電路,VD1和VD3構成另一組負極性全波整流電路,兩組全波整流電路共用次級線圈。圖9-24輸出正、負極性直流電壓的全波整流電路1.電路分析方法關于正、負極性全波整流電路分析方法說明下列2點:(1)在確定了電路結構之后,電路分析方法和普通的全波整流電路一樣,只是需要分別分析兩組不同極性全波整流電路,如果已經掌握了全波整流電路的...
負極連接所述高壓續流二極管的負極;所述高壓續流二極管的正極通過基島或引線連接所述漏極管腳;所述邏輯電路的高壓端口連接所述高壓供電管腳。為實現上述目的及其他相關目的,本實用新型還提供一種電源模組,所述電源模組至少包括:上述合封整流橋的封裝結構,一電容,負載及一采樣電阻;所述合封整流橋的封裝結構的火線管腳連接火線,零線管腳連接零線,信號地管腳接地;所述一電容的一端連接所述合封整流橋的封裝結構的高壓供電管腳,另一端接地;所述負載連接于所述合封整流橋的封裝結構的高壓供電管腳與漏極管腳之間;所述一采樣電阻的一端連接所述合封整流橋的封裝結構的采樣管腳,另一端接地。為實現上述目的及其他相關目的,本實用新型還...
英飛凌二極管綜述:具有比較高功率密度和更多功能的高性能平板封裝器件、具有高性價比的晶閘管/二極管模塊、采用分立封裝的高效硅基或CoolSiCTM碳化硅二極管以及裸片等靈活多樣產品組合大功率二極管和晶閘管旨在顯著提高眾多應用的效率,覆蓋10kW-10GW的寬廣功率范圍,樹立了行業應用**。分立式硅或碳化硅(SiC)肖特基二極管的應用范圍包括服務器堆場、太陽能發電廠和儲能系統等;同時適用于工業和汽車級應用。優勢:?高性價比?全程采用X射線100%監測生產,保障產品的高性能和使用壽命?使用銅基板,便于快捷安裝?完整的模塊封裝技術組合,一站式購齊整流橋(D25XB60)內部主要是由四個二極管組成的橋路...
因此我們可以用散熱器的基板溫度的數值來代替整流橋的殼溫,這樣不在測量上易于實現,還不會給終的計算帶來不可容忍的誤差。折疊仿真分析整流橋在強迫風冷時的仿真分析前面本文從不同情形下的傳熱途徑著手,用理論的方法分析了整流橋在三種不同冷卻方式下的傳熱過程,在此本文通過仿真軟件詳細的整流橋模型來對帶有散熱器、強迫風冷下的整流橋散熱問題進行進一步的闡述。圖5、仿真計算模型如上圖是仿真計算的模型外型圖。在該模型中,通過解剖一整流橋后得到的相關尺寸參數來進行仿真分析模型的建立。其仿真分析結果如下所示:圖6、整流橋散熱器基板溫度分布有上圖可以看出,整流橋散熱器的基板溫度分布相對而言還是比較均勻的,約70℃左右。...
所述負載連接于所述第三電容c3的兩端。具體地,在本實施例中,所述負載為led燈串,所述led燈串的正極連接所述高壓供電管腳hv,負極連接所述第三電容c3與所述一電感l1的連接節點。如圖4所示,所述第二采樣電阻rcs2的一端連接所述合封整流橋的封裝結構1的采樣管腳cs,另一端接地。本實施例的電源模組為非隔離場合的小功率led驅動電源應用,適用于高壓buck(5w~25w)。實施例三如圖5所示,本實施例提供一種合封整流橋的封裝結構,與實施例一及實施例二的不同之處在于,所述整流橋的設置方式不同,且還包括瞬態二極管dtvs。如圖5所示,在本實施例中,所述瞬態二極管dtvs與所述高壓續流二極管df疊置于...
本實用新型屬于電磁閥技術領域,尤其是涉及一種電磁閥的帶整流橋繞組塑封機構。背景技術:大多數家用電器上使用的需要實現全波整流功能的進水電磁閥,普遍將整流橋堆設置在電腦板等外部設備上,占用了電腦板上有限的空間,造成制造成本偏高,且有一定的故障率,一旦整流橋堆失效,整塊電腦板都將報廢。雖然目前市場上出現了內嵌整流橋堆的進水電磁閥,但有些由于繞組塑封的結構不合理,金屬件之間的爬電距離設置過小,導致產品的電氣性能較差,安全性較差,在一些嚴酷條件下使用很容易損壞塑封,引起產品失效,嚴重的會燒毀家用電器;有些由于工藝過于復雜,橋堆跟線圈在同一側,導致橋堆在線圈發熱時損傷。技術實現要素:本實用新型為了克服現有...
整流橋模塊作為一種功率元器件,廣泛應用于各種電源設備。其內部主要是由四個二極管組成的橋路來實現把輸入的交流電壓轉化為輸出的直流電壓。在整流橋模塊的每個工作周期內,同一時間只有兩個二極管進行工作,通過二極管的單向導通功能,把交流電轉換成單向的直流脈動電壓。對一般常用的小功率整流橋進行解剖會發現,其內部的結構所示,該全波整流橋采用塑料封裝結構(大多數的小功率整流橋都是采用該封裝形式)。橋內的四個主要發熱元器件——二極管被分成兩組分別放置在直流輸出的引腳銅板上。在直流輸出引腳銅板間有兩塊連接銅板,他們分別與輸入引**流輸入導線)相連,形成我們在外觀上看見的有四個對外連接引腳的全波整流橋。由于一般整流...
金屬引線的一端設置在與管腳連接的導電部件上),能實現電連接即可,不限于本實施例。需要說明的是,所述整流橋可基于不同類型的器件選擇不同的基島實現,不限于本實施例,任意可實現整流橋連接關系的設置方式均可,在此不一一贅述。如圖1所示,在本實施例中,所述功率開關管及所述邏輯電路集成于控制芯片12內。具體地,所述功率開關管的漏極作為所述控制芯片12的漏極端口d,源極連接所述邏輯電路的采樣端口,柵極連接所述邏輯電路的控制信號輸出端(輸出邏輯控制信號);所述邏輯電路的采樣端口作為所述控制芯片12的采樣端口cs,高壓端口連接所述功率開關管的漏極,接地端口作為所述控制芯片12的接地端口gnd。所述控制芯片12的...
而是檢測電源變壓器,因為幾只整流二極管同時出現相同故障的可能性較小。(2)對于某一組整流電路出現故障時,可按前面介紹的故障檢測方法進行檢查。這一電路中整流二極管中的二極管VD1和VD3、VD2和VD4是直流電路并聯的,進行在路檢測時會相互影響,所以準確的檢測應該將二極管脫開電路。4.電路故障分析如表9-29所示是正、負極性全波整流電路的故障分析。如圖9-25所示是典型的正極性橋式整流電路,VD1~VD4是一組整流二極管,T1是電源變壓器。圖9-25正極性橋式整流電路橋式整流電路具有下列幾個明顯的電路特征和工作特點:(1)每一組橋式整流電路中要用四只整流二極管,或用一只橋堆(一種4只整流二極管組...
整流橋的作用就是能夠通過二極管的單向導通的特性將電平在零點上下浮動的交流電轉換為單向的直流電,通常電源中采用的整流橋除了這種單顆集成式的還有采用四顆二極管實現的,它們的原理完全相同作用就是整流,把交流電變為直流電。實質上就是把4個硅二極管接成橋式整流電路之后封裝在一起用塑料包裝起來,引出4個腳,其中2個腳接交流電源,用~~符號表示,2個腳是直流輸出,用+-表示。特點是方便小巧。不占地方。規格型號一般直接用參數表示:50伏1安,100伏5安等等。如果你要使用整流橋,選擇的時候留點余量,例如要做12伏2安培輸出的整流電源,就可以選擇25伏5安培的橋。選擇整流橋要考慮整流電路和工作電壓。整流橋堆整流...
所述功率開關管可通過所述信號地基島14及所述信號地管腳gnd實現散熱。需要說明的是,所述控制芯片12可根據設計需要設置在不同的基島上。當設置于所述信號地基島14上時所述控制芯片12的襯底與所述信號地基島14電連接,散熱效果好。當設置于其他基島上時所述控制芯片12的襯底與該基島絕緣設置,包括但不限于絕緣膠,以防止短路,散熱效果略差。具體設置方式可根據需要進行設定,在此不一一贅述。本實施例的合封整流橋的封裝結構采用兩基島架構,將整流橋,功率開關管及邏輯電路集成在一個引線框架內,其中,一個引線框架是指形成于同一塑封體中的管腳、基島、金屬引線及其他金屬連接結構;由此,本實施例可降低封裝成本。如圖2所示...
從前面對整流橋帶散熱器來實現其散熱過程的分析中可以看出,整流橋主要的損耗是通過其背面的散熱器來散發的,因此在此討論整流橋殼溫如何確定時,就忽約其通過引腳的傳熱量。現結合RS2501M整流橋在110VAC電源模塊上應用的損耗(大為)來分析。假設整流橋殼體外表面上的溫度為結溫(即),表面換熱系數為(在一般情況下,強迫風冷的對流換熱系數為20~40W/m2C)。那么在環境溫度為,通過整流橋正表面散發到環境中的熱量為:忽約整流橋引腳的傳熱量,則通過整流橋背面的傳熱量為:由于在整流橋殼體表面上的兩個傳熱途徑上(殼體正面、殼體背面)的熱阻分別為:根據熱阻的定義式有:所以:由上式可以看出:整流橋的結溫與殼體...
這種多層保護使電力半導體器件芯片的性能穩定可靠。半導體芯片直接焊在DBC基板上,而芯片正面都焊有經表面處理的鉬片或直接用鋁絲鍵合作為主電極的引出線,而部分連線是通過DBC板的刻蝕圖形來實現的。根據三相整流橋電路共陽和共陰的連接特點,FRED芯片采用三片是正燒(即芯片正面是陰極、反面是陽極)和三片是反燒(即芯片正面是陽極、反面是陰極),并利用DBC基板的刻蝕圖形,使焊接簡化。同時,所有主電極的引出端子都焊在DBC基板上,這樣使連線減少,模塊可靠性提高。4、外殼:殼體采用抗壓、抗拉和絕緣強度高以及熱變溫度高的,并加有40%玻璃纖維的聚苯硫醚(PPS)注塑型材料組成,它能很好地解決與銅底板、主電極之...
所述一整流二極管及所述第二整流二極管的負極粘接于所述高壓供電基島上,正極分別連接所述火線管腳及所述零線管腳;所述第三整流二極管及第四整流二極管的正極粘接于所述信號地基島上,負極連接分別連接所述火線管腳及所述零線管腳。可選地,所述至少兩個基島包括火線基島及零線基島;所述整流橋包括第五整流二極管、第六整流二極管、第七整流二極管及第八整流二極管;所述第五整流二極管及所述第六整流二極管的負極分別粘接于所述火線基島及所述零線基島上,正極連接所述信號地管腳;所述第七整流二極管及所述第八整流二極管的正極分別粘接于所述火線基島及所述零線基島上,負極連接所述高壓供電管腳。更可選地,所述合封整流橋的封裝結構還包括...
一插片、第二插片之間通過線圈架隔開,可以明顯增大爬電距離,從而提高了電氣性能和可靠性,提升了產品質量;而且整流橋堆放置在線圈架繞線的不同側,減少了線圈發熱引起整流橋堆損傷或整個繞組的二次損傷。附圖說明圖1為本實用新型的結構示意圖。圖2為本實用新型的圖。圖3為本實用新型線圈架的結構示意圖。圖4為本實用新型整流橋堆的構示意圖。具體實施方式為了使本技術領域的人員更好的理解本實用新型方案,下面將結合本實用新型實施例中的附圖,對本實用新型實施例中的技術方案進行清楚、完整的描述。如圖1-4所示,一種電磁閥的帶整流橋繞組塑封機構,包線圈架1、繞組、插片組件及塑封殼,其中所述線圈架1為一塑料架,該線圈架1包括...
所述功率開關管可通過所述信號地基島14及所述信號地管腳gnd實現散熱。需要說明的是,所述控制芯片12可根據設計需要設置在不同的基島上。當設置于所述信號地基島14上時所述控制芯片12的襯底與所述信號地基島14電連接,散熱效果好。當設置于其他基島上時所述控制芯片12的襯底與該基島絕緣設置,包括但不限于絕緣膠,以防止短路,散熱效果略差。具體設置方式可根據需要進行設定,在此不一一贅述。本實施例的合封整流橋的封裝結構采用兩基島架構,將整流橋,功率開關管及邏輯電路集成在一個引線框架內,其中,一個引線框架是指形成于同一塑封體中的管腳、基島、金屬引線及其他金屬連接結構;由此,本實施例可降低封裝成本。如圖2所示...
目錄1整流橋模塊的原理2整流橋模塊的結構特點3整流橋模塊的優點4整流橋模塊的分類展開1整流橋模塊的原理其內部主要是由四個二極管組成的橋路來實現把輸入的交流電壓轉化為輸出的直流電壓。在整流橋的每個工作周期內,同一時間只有兩個二極管進行工作,通過二極管的單向導通功能,把交流電轉換成單向的直流脈動電壓。對一般常用的小功率整流橋(如:RECTRONSEMICONDUCTOR的RS2501M)進行解剖會發現,其內部的結構如圖2所示,該全波整流橋采用塑料封裝結構(大多數的小功率整流橋都是采用該封裝形式)。橋內的四個主要發熱元器件——二極管被分成兩組分別放置在直流輸出的引腳銅板上。在直流輸出引腳銅板間有兩塊...
以上就是ASEMI對于整流橋接法的兩個方面介紹正、負極性全波整流電路及故障處理如圖9-24所示是能夠輸出正、負極性單向脈動直流電壓的全波整流電路。電路中的T1是電源變壓器,它的次級線圈有一個中心抽頭,抽頭接地。電路由兩組全波整流電路構成,VD2和VD4構成一組正極性全波整流電路,VD1和VD3構成另一組負極性全波整流電路,兩組全波整流電路共用次級線圈。圖9-24輸出正、負極性直流電壓的全波整流電路1.電路分析方法關于正、負極性全波整流電路分析方法說明下列2點:(1)在確定了電路結構之后,電路分析方法和普通的全波整流電路一樣,只是需要分別分析兩組不同極性全波整流電路,如果已經掌握了全波整流電路的...
所述變壓器的第二線圈一端經由所述二極管d及所述第五電容c5連接所述第二線圈的另一端。如圖6所示,所述二極管d的正極連接所述變壓器的第二線圈,負極連接所述第五電容c5。如圖6所示,所述負載連接于所述第五電容c5的兩端。具體地,在本實施例中,所述負載為led燈串,所述led燈串的正極連接所述二極管d的負極,負極連接所述第五電容c5與所述變壓器的連接節點。如圖6所示,所述第三采樣電阻rcs3的一端連接所述合封整流橋的封裝結構1的采樣管腳cs,另一端接地。本實施例的電源模組為隔離場合的小功率led驅動電源應用,適用于兩繞組flyback(3w~25w)。實施例四本實施例提供一種合封整流橋的封裝結構,與...
因此我們可以用散熱器的基板溫度的數值來代替整流橋的殼溫,這樣不在測量上易于實現,還不會給終的計算帶來不可容忍的誤差。折疊仿真分析整流橋在強迫風冷時的仿真分析前面本文從不同情形下的傳熱途徑著手,用理論的方法分析了整流橋在三種不同冷卻方式下的傳熱過程,在此本文通過仿真軟件詳細的整流橋模型來對帶有散熱器、強迫風冷下的整流橋散熱問題進行進一步的闡述。圖5、仿真計算模型如上圖是仿真計算的模型外型圖。在該模型中,通過解剖一整流橋后得到的相關尺寸參數來進行仿真分析模型的建立。其仿真分析結果如下所示:圖6、整流橋散熱器基板溫度分布有上圖可以看出,整流橋散熱器的基板溫度分布相對而言還是比較均勻的,約70℃左右。...
所述第二插片為兩個。推薦的,所述線圈架上設有供所述第二插接片插入的插接槽;通過設置插接槽便于對第二插片進行安裝,第二插片插入到插接槽當中,插接槽的內壁對第二插片進行限位。推薦的,所述第二插片側壁上設有電連凸部,所述整流橋堆一側設有與所述電連凸部相連的凸出部。推薦的,所述整流橋堆另一側設有與所述一插片相連的凸部。推薦的,所述線圈架上設有凹陷部,所述一插片設于所述凹陷部內;通過設置凹陷部可便于在安裝一插片的時候,一插片直接嵌入到凹陷部當中,其安裝速度快,裝配穩定。推薦的,所述線圈架上部設有一限位凸部,下部設有第二限位凸部;所述一插片和第二插片均設于所述一限位凸部上;通過設置一限位凸部和第二限位凸部...
請參閱圖1~圖7。需要說明的是,本實施例中所提供的圖示以示意方式說明本實用新型的基本構想,遂圖式中顯示與本實用新型中有關的組件而非按照實際實施時的組件數目、形狀及尺寸繪制,其實際實施時各組件的型態、數量及比例可為一種隨意的改變,且其組件布局型態也可能更為復雜。實施例一如圖1所示,本實施例提供一種合封整流橋的封裝結構1,所述合封整流橋的封裝結構1包括:塑封體11,設置于所述塑封體11邊緣的多個管腳,以及設置于所述塑封體11內的整流橋、功率開關管、邏輯電路、高壓供電基島13及信號地基島14。如圖1所示,所述塑封體11呈長方形,用于將引線框架及器件整合在一起,并保護內部器件。在本實施例中,所述塑封體...
以及設置于所述塑封體內的整流橋、功率開關管、邏輯電路、至少兩個基島;其中,所述整流橋的一交流輸入端通過基島或引線連接所述火線管腳,第二交流輸入端通過基島或引線連接所述零線管腳,一輸出端通過基島或引線連接所述高壓供電管腳,第二輸出端通過基島或引線連接所述信號地管腳;所述邏輯電路的控制信號輸出端輸出邏輯控制信號,高壓端口連接所述功率開關管的漏極,采樣端口連接所述采樣管腳,接地端口連接所述信號地管腳;所述功率開關管的柵極連接所述邏輯控制信號,漏極連接所述漏極管腳,源極連接所述采樣管腳;所述功率開關管及所述邏輯電路分立設置或集成于控制芯片內。可選地,所述火線管腳、所述零線管腳、所述高壓供電管腳及所述漏...
以及設置于所述塑封體內的整流橋、功率開關管、邏輯電路、至少兩個基島;其中,所述整流橋的一交流輸入端通過基島或引線連接所述火線管腳,第二交流輸入端通過基島或引線連接所述零線管腳,一輸出端通過基島或引線連接所述高壓供電管腳,第二輸出端通過基島或引線連接所述信號地管腳;所述邏輯電路的控制信號輸出端輸出邏輯控制信號,高壓端口連接所述功率開關管的漏極,采樣端口連接所述采樣管腳,接地端口連接所述信號地管腳;所述功率開關管的柵極連接所述邏輯控制信號,漏極連接所述漏極管腳,源極連接所述采樣管腳;所述功率開關管及所述邏輯電路分立設置或集成于控制芯片內。可選地,所述火線管腳、所述零線管腳、所述高壓供電管腳及所述漏...
以及設置于所述塑封體內的整流橋、功率開關管、邏輯電路、至少兩個基島;其中,所述整流橋的一交流輸入端通過基島或引線連接所述火線管腳,第二交流輸入端通過基島或引線連接所述零線管腳,一輸出端通過基島或引線連接所述高壓供電管腳,第二輸出端通過基島或引線連接所述信號地管腳;所述邏輯電路的控制信號輸出端輸出邏輯控制信號,高壓端口連接所述功率開關管的漏極,采樣端口連接所述采樣管腳,接地端口連接所述信號地管腳;所述功率開關管的柵極連接所述邏輯控制信號,漏極連接所述漏極管腳,源極連接所述采樣管腳;所述功率開關管及所述邏輯電路分立設置或集成于控制芯片內。可選地,所述火線管腳、所述零線管腳、所述高壓供電管腳及所述漏...