.滾動軸承是旋轉機械的關鍵部件,工作在高速,高溫以及高載荷的變工況下,極易發生故障,因此,對滾動軸承進行故障診斷和全壽命預測從而實現故障單期預警和精確的維修決策,避免故隙引發的事故BTS100軸承壽命預測測試臺,可以開展軸承壽命加速實驗,實驗原理就是在不改變軸承失效機理,不增加新的失效模式的前提下,通過提高試驗軸承應力水平的方法來加速其失效進程,然后再根據試驗數據運用數理統計理論估算出正常應力下軸承的壽命的數據。軸承外圈的故障特征信息被噪聲所包圍。用本文所提方法對軸承外圈故障信號進行分析,多目標粒子群優化算法(參數與“4.仿真信號分析”的設置相同)優化VMD參數得到的Pareto解集及目標值如表2所示。從表2中可以看出,當**以信息熵、峭度、相關系數其中一個指標評價時,參數組合選擇序號11時,f3**小,即相關系數取得**大值,而其對應的信息熵和峭度既不是較優值也不是**差值,一方面說明相關系數和峭度以及信息熵之間是沒有***的,另一方面說明如果**以相關系數評價時,并沒有考慮到軸承故障沖擊性以及與周期性,在此參數組合下,對原始信號進行分解故障機理研究模擬實驗臺是深入研究故障與工業 4.0 關系的基礎。黑龍江在線故障機理研究模擬實驗臺
現有方法對強噪聲背景下的弱信號的分析不是很理想,提出一種循環相位網絡來分析高斯白噪聲下的微弱周期信號,循環相位網絡在一定信噪比范圍內相比于其他微弱信號檢測法能更好的提取微弱信號相關信息,且計算量小,相關理論簡單,適應于對微弱信號的快速檢測。為了進一步減少計算量,引入了微弱信號存在性檢測法濾除純高斯噪聲信號,經實驗驗證微弱信號存在性檢測法與循環相位網絡相結合,對強噪聲背景下的微弱周期信號分析具有良好的效果國產故障機理研究模擬實驗臺檢測故障故障機理研究模擬實驗臺為研究提供了可靠的數據。
提出一種往復式壓縮機示功圖處理方法以及基于卷積神經網絡機器學習的智能往復式壓縮機故障診斷流程。使用等參元歸一化方式處理示功圖,處理后的樣本經卷積神經網絡分類識別,可實現往復式壓縮機自學習、智能故障診斷。使用等參元歸一化方法,可無需考慮工藝變化、環境改變等造成示功圖圖形改變的因素,這樣示功圖的處理方式有助于后續的神經網絡智能識別擁有更高的準確率、更強普適性。經模擬和實測數據驗證齒輪箱柔性軸系故障植入綜合試..核電臥式轉子振動特性試驗平臺電機對拖齒輪箱故障植入試驗平臺微型軸承及動平衡試驗平臺軋銀振動特性試驗平臺軌道軸承振動及疲勞磨損試驗平臺核電立式軸承振動特性試驗扭轉振動試驗平臺平行齒輪箱疲勞磨損試驗平臺水泵故障植入試平臺齒輪箱傳動特性試驗平臺高速柔性轉子振動試驗平臺行星齒輪箱疲勞磨損試驗平臺軸承疲勞磨損試驗平臺單級便攜式行星齒輪箱故障植入實驗臺,
PT300測試臺組成:測試臺主要由微型直流電機、調速器、雙支撐軸承、動平衡轉子盤、軸承、齒輪、轉軸、傳感器支架、減震基礎底座等組成,采用微型模塊化設計,可用于現場測點分散的大型結構靜力試驗、擬靜力試驗、疲勞試驗等場合,能捕準確捉材料由彈性區域進入塑性區域整個過程的緩變信號。主要特點●采集器與控制器之間采用RS485總線星型連接●每個控制器可以控制8個采集器,每個采集器8通道或16通道可選●控制器支持POE供電、NTP同步,故障機理研究模擬實驗臺在研究中發揮著關鍵作用。
數據采集系統查找您想要的產品系列全部產品分布式數據采集系統集中式數據采集系統堅固型數據采集系統便攜式數據采集系統無線數據采集系統,主要功能:?故障軸承模擬:軸承內圈故障、軸承外圈故障、軸承滾動體故障、軸承保持架故障、軸承綜合故障(深溝球軸承)。?常見機械故障:機械松動、不對中等試驗。?不同轉速下的軸承故障頻率識別。?滾子軸承故障模擬(可選)聲強分析?記錄聲強原始時域數據?支持聲強的實時測試、顯示與事后處理分析聲壓分析?支持聲壓的實時測試、顯示與事后處理分析?可以提供聲壓時域曲線、頻域線譜與倍頻程等多種顯示方式?在聲壓倍頻程顯示方式中,提供1/1、1/3、1/6、1/12、1/24等多種頻帶設置方式?提供A、B、C、D、Wa、Wc等多種計權方式故障機理研究模擬實驗臺的可靠性備受認可。河北故障機理研究模擬實驗臺特點
故障機理研究模擬實驗臺的應用范圍不斷擴大。黑龍江在線故障機理研究模擬實驗臺
在機械設備運行過程中,零部件的運動產生振動和沖擊,包含著豐富的設備健康運行狀態信息[1-2]。振動沖擊往往是由零部件之間的碰撞敲擊產生,其幅值大小、出現位置表現著設備的健康狀態。在航空、船舶、石油化工等領域的機械設備中,包括航空發動機、內燃機、齒輪箱、往復壓縮機、泵等,沖擊振動是常見的故障模式[3-5]。因此,監測機械振動信號中的沖擊成分可有效反映機械部件運行的健康狀態,對設備進行故障診斷具有重要的意義。振動信號沖擊成分呈現多頻段分布,并伴隨著噪聲干擾,不同頻率成分的沖擊在時域混疊等問題[8-9]。以上情況,導致了復雜機械設備的實際振動監測信號的分析難度,造成了早期故障沖擊特征難以捕捉等問題。更進一步地,其中一些往復機械(柴油機、往復壓縮機、往復泵等)的振動信號的沖擊成分在時域分布上呈現周期性間隔特點,與曲軸特定轉角對應[10-12],單從回轉設備的頻域分析方法在此并不適應。由于實際振動信號的頻域復雜性和時域多沖擊分布特點,因此需要對采集的振動沖擊信號進行頻域分解和時域沖擊的提取,為后續特征提取和故障診斷奠定基礎。黑龍江在線故障機理研究模擬實驗臺