采用小粒徑氮化鋁粉:氮化鋁燒結過程的驅動力為表面能,顆粒細小的AlN粉體能夠增強燒結活性,增加燒結推動力從而加速燒結過程。研究證實,當氮化鋁原始粉料的起始粒徑細小20倍后,陶瓷的燒結速率將增加147倍。燒結原料應選擇粒徑小且分布均勻的氮化鋁粉,可防止二次再結晶,內部的大顆粒易發生晶粒異常生長而不利于致密化燒結;若顆粒分布不均勻,在燒結過程中容易發生個別晶體異常長大而影響燒結。此外,氮化鋁陶瓷的燒結機理有時也受原始粉末粒度的影響。微米級的氮化鋁粉體按體積擴散機理進行燒結,而納米級的粉體則按晶界擴散或者表面擴散機理進行燒結。但目前而言,細小均勻的氮化鋁粉體制備很困難,大多通過濕化學法結合碳熱還原法制備,不但燒結工藝復雜,而且耗能多多規模的推廣應用仍舊有一定的限制。國內在小粒徑高性能氮化鋁粉的供應上,仍十分稀缺。提高氮化鋁陶瓷熱導率的途徑:加入適當的燒結助劑,可促進氮化鋁陶瓷致密化。湖州單晶氧化鋁商家
氮化鋁陶瓷的流延成型:料漿均勻流到或涂到支撐板上,或用刀片均勻的刷到支撐面上,形成漿膜,經干燥形成一定厚度的均勻的素坯膜的一種料漿成型方法。流延成型工藝包括漿料制備、流延成型、干燥及基帶脫離等過程。溶劑和分散劑,高固相含量的流延漿料是流延成型制備高性能氮化鋁陶瓷的關鍵因素之一。溶劑和分散劑是高固相含量的流延漿料的關鍵。溶劑必須滿足以下條件:必須與其他添加成分相溶,如分散劑、粘結劑和增塑劑等;化學性質穩定,不與粉料發生化學反應;對粉料顆粒的潤濕性能好;易于揮發與燒除;使用安全、衛生且對環境污染小。坯體強度高、坯體整體均勻性好、可做近凈尺寸成型、適于制備復雜形狀陶瓷部件和工業化推廣、無排膠困難、成本低等。衢州微米氮化鋁粉體供應商氧化鈹雖然有優良的性能,但其粉末有劇毒。
在AlN陶瓷的燒結工藝中,燒結氣氛的選擇也十分關鍵的。一般的AlN陶瓷燒結氣氛有3種:還原型氣氛、弱還原型氣氛和中性氣氛。還原性氣氛一般為CO,弱還原性氣氛一般為H2,中性氣氛一般為N2。在還原氣氛中,AlN陶瓷的燒結時間及保溫時間不宜過長,燒結溫度不宜過高,以免AlN被還原。在中性氣氛中不會出現上述情況。所以一般選擇在氮氣中燒結,這樣可以獲得性能更好的AlN陶瓷。目前,國內氮化鋁材料的研究制造水平相比國外還有不小差距,研究基本停留在各大科研院所高校、真正能夠獨自產業化生產的機構極少。未來需把精力投入到幾種方法的綜合利用或新型陶瓷燒結技術研發上,減小生產成本,使得AlN陶瓷產品的種類豐富,外形尺寸結構多樣化、滿足多種領域應用的需求。
在現有可作為基板材料使用的陶瓷材料中,Si3N4陶瓷抗彎強度很高,耐磨性好,是綜合機械性能很好的陶瓷材料,同時其熱膨脹系數很小,因而被很多人認為是一種很有潛力的功率器件封裝基片材料。但是其制備工藝復雜,成本較高,熱導率偏低,主要適合應用于強度要求較高但散熱要求不高的領域。而氮化鋁各方面性能同樣也非常,尤其是在電子封裝對熱導率的要求方面,氮化鋁優勢巨大。不足的是,較高成本的原料和工藝使得氮化鋁陶瓷價格很高,這是制約氮化鋁基板發展的主要問題。但是隨著氮化鋁制備技術的不斷發展,其成本必定會有所降低,氮化鋁陶瓷基板在大功率LED領域大面積應用指日可待。結晶氮化鋁溶于水、無水乙醇、,微溶于鹽酸,其水溶液呈酸性。
氮化鋁陶瓷的制備技術:壓制成形的三個階段:一階段,主要是顆粒的滑動和重排,無論是一般的粉體或者造粒后的粉體,其填充于模具中的很初結構中都含有和顆粒尺寸接近或稍小的空隙。第二階段,顆粒接觸點部位發生變形和破裂,當壓力超過顆粒料的表觀屈服應力時,顆粒發生變形使得顆粒間空隙減小,隨著顆粒的變形,坯體體積很大空隙尺寸減少,塑性低的致密粒料對應的屈服應力大,達到相同致密度所需要更高的壓力。第三階段,坯體進一步密實與彈性壓縮,這一階段起始于高壓力階段,但密度提高幅度較小,此階段發生一定程度的彈性壓縮,這種彈性壓縮過大,則在脫模后會造成應力開裂與分層。模壓成型的優點是成型坯體尺寸準確、操作簡單、模壓坯體中粘結劑含量較少、干燥和燒成收縮較小,特別適用于制備形狀簡單、長徑比小的制品。但是,這種傳統的成型方法效率低,且制得的AlN陶瓷零部件的尺寸精度取決于所用模具的精度,而高精度模具的制備成本較高。隨著近年來全球范圍內電子陶瓷產業化規模的不斷擴大,CIM 技術誘人的應用前景更值得期待。大連單晶氮化鋁品牌
結晶氮化鋁:無色斜方品系結晶工業品為淡黃色或深黃色結晶。湖州單晶氧化鋁商家
提高氮化鋁陶瓷熱導率的途徑:選擇合適的燒結工藝,微波燒結:微波燒結是利用微波與介質的相互作用產生介電損耗使坯體整體加熱的燒結方法。同時,微波可以使粉末顆粒活性提高,有利于物質的傳遞。微波燒結已成為一門新型的陶瓷燒結技術,它利用整體性自身加熱,使材料加熱的效率提高,升溫速度加快,保溫時間縮短,這有利于提高致密化速度并可以有效抑制晶粒生長,獲得獨特的性能和結構。放電等離子燒結:放電等離子燒結系統利用脈沖能、放電脈沖壓力和焦耳熱產生的瞬間高溫場來實現燒結過程。SPS升溫速度快、燒結時間短、能在較低溫度下燒結,通過控制燒結組分與工藝能實現溫度梯度場,可用于燒結梯度材料及大型工件等復雜材料。放電等離子燒結內每個顆粒均勻的自身發熱使顆粒表現活化,因而具有很高的熱導率,可在短時間內使燒結體致密化。湖州單晶氧化鋁商家